// Home / Documentation / Gallery of Distributions / Truncated normal distribution

Truncated normal distribution

Where will you meet this distribution?

Shape of Distribution

Basic Properties

  • Four parameters a, b,m,\sigma are required (How can you get these).
    a<b
    \sigma>0
  • Continuous distribution defined on bounded range a\leq x \leq b
  • This distribution can be symmetric or asymmetric.

Probability

  • Cumulative distribution function
    F(x)=\frac{1}{\Delta}\left[\Phi\left(\frac{x-m}{\sigma}\right)-\Phi(A)\right]

    where

    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{b-m}{\sigma}

    and \Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • Probability density function
    f(x)=\frac{1}{\sigma\Delta}\phi\left(\frac{x-m}{\sigma}\right)
  • How to compute these on Excel.
     
    1
    2
       
    3
    4
    5
    6
    7
    8
       
    9
       
    A B
    Data Description
    2.5 Value for which you want the distribution
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTTRUNCNORMDIST(A2,A3,A4,A5,A6,TRUE) Cumulative distribution function for the terms above
    =NTTRUNCNORMDIST(A2,A3,A4,A5,A6,FALSE) Probability density function for the terms above

    Sample distribution

  • Function reference : NTTRUNCNORMDIST

Quantile

  • Inverse of cumulative distribution function
    F^{-1}(P)=\sigma\Phi^{-1}\left[\Delta P+\Phi(A)\right]+m

    where

    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    and \Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • How to compute this on Excel.
     
    1
    2
       
    3
    4
    5
    6
    7
    8
       
    A B
    Data Description
    0.5 Probability associated with the truncated normal distribution
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTTRUNCNORMINV(A2,A3,A4,A5,A6) Inverse of the cumulative distribution function for the terms above
  • Function reference : NTTRUNCNORMINV

Characteristics

Mean – Where is the “center” of the distribution? (Definition)

  • Mean of the distribution is given as
    m+\frac{\phi(A)-\phi(B)}{\Delta}\sigma

    where

    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    , \Phi(\cdot) and \phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
    A B
    Data Description
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTTRUNCNORMMEAN(A2,A3,A4,A5) Mean of the distribution for the terms above
  • Function reference : NTTRUNCNORMMEAN

Standard Deviation – How wide does the distribution spread? (Definition)

  • Variance of the distribution is given as
    \left[1+\frac{A\phi(A)-B\phi(B)}{\Delta}-\left(\frac{\phi(A)-\phi(B)}{\Delta}\right)^2\right]\sigma^2

    where

    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    , \Phi(\cdot) and \phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

    Standard Deviation is a positive square root of Variance.

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
       
    A B
    Data Description
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTTRUNCNORMSTDEV(A2,A3,A4,A5) Standard deviation of the distribution for the terms above
  • Function reference : NTTRUNCNORMSTDEV

Skewness – Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as
    -\frac{1}{V^{3/2}}\left[2\Delta_0+(3\Delta_{1}-1)\Delta_0+\Delta_2\right]

    where

    z(x)=\frac{\phi(x)}{\Delta}
    \Delta_k=B^kz(B)-A^kz(A)
    V=1-\Delta_1-\Delta_0^2
    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    , \Phi(\cdot) and \phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
       
    A B
    Data Description
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTTRUNCNORMSKEW(A2,A3,A4,A5) Skewness of the distribution for the terms above
  • Function reference : NTTRUNCNORMSKEW

Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as
    \frac{1}{V^2}\left[-3\Delta_0^4-2\Delta_0^2(3\Delta_1+1)-4\Delta_2\Delta_0-3\Delta_1-\Delta_3+3\right]-3

    where

    z(x)=\frac{\phi(x)}{\Delta}
    \Delta_k=B^kz(B)-A^kz(A)
    V=1-\Delta_1-\Delta_0^2
    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    , \Phi(\cdot) and \phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
    A B
    Data Description
    1 Value of parameter Min
    4 Value of parameter Max
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTLOGNORMKURT(A2,A3,A4,A5) Kurtosis of the distribution for the terms above
  • Function reference : NTTRUNCNORMKURT

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,
    x=\sigma\Phi^{-1}\left[\Delta U+\Phi(A)\right]+m

    where

    \Delta=\Phi(B)-\Phi(A)
    A=\frac{a-m}{\sigma},\;B=\frac{a-m}{\sigma}

    , \Phi(\cdot) and \phi(\cdot) are probability density function and cumulative distribution function of standard normal distribution respectively.

  • How to generate random numbers on Excel.
     
    1
    2
    3
    4
    5
    6
    7

       

    A B
    Data Description
    1 lower limit of support
    4 upper limit of support
    3 Value of parameter M
    0.9 Value of parameter Sigma
    Formula Description (Result)
    =NTRANDTRUNCNORM(100,A2,A3,A4,A5,0) 100 truncated normal deviates based on Mersenne-Twister algorithm for which the parameters above

    Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A7:A106 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference

 


Comments are closed.