Triangular distribution
Where do you meet this distribution?
- Project management – PERT, CPM and so on
- Digital signal processing (dithering) – digital audio, digital video, digital photography, seismology, RADAR, weather forecasting systems and many more
- Data security
- Business simulation (Corporate finance)
- Proxy of Beta distribution
Shape of Distribution
Basic Properties
- Three parameters are required (How can you get these).
These parameters are minimum value of variable, maximum value of variable and mode of the distribution respectively.
- Continuous distribution defined on bounded range
- This distribution can be symmetric or asymmetric.
Probability
- Cumulative distribution function
- Probability density function
- How to compute these on Excel.
1 2 3 4 5 6 7
8
A B Data Description 1.5 Value for which you want the distribution 1 Value of parameter Min 3 Value of parameter Max 1.4 Value of parameter Mode Formula Description (Result) =NTTRIANGULARDIST(A2,A3,A4,A5,TRUE) Cumulative distribution function for the terms above =NTTRIANGULARDIST(A2,A3,A4,A5,FALSE) Probability density function for the terms above - Function reference : NTTRIANGULARDIST
Quantile
- Inverse function of cumulative distribution function
- How to compute this on Excel
1 2 3 4 5 6 A B Data Description 1 Value of parameter Min 3 Value of parameter Max 1.4 Value of parameter Mode Formula Description (Result) =NTTRIANGULARMEAN(A2,A3,A4) Mean of the distribution for the terms above - Function reference : NTTRIANGULARMEAN
Standard Deviation – How wide does the distribution spread? (Definition)
- Variance of the distribution is given as
Standard Deviation is a positive square root of Variance.
- How to compute this on Excel
1 2 3 4 5 6
A B Data Description 1 Value of parameter Min 3 Value of parameter Max 1.4 Value of parameter Mode Formula Description (Result) =NTTRIANGULARSTDEV(A2,A3,A4) Standard deviation of the distribution for the terms above - Function reference : NTTRIANGULARSTDEV
Skewness – Which side is the distribution distorted into? (Definition)
- Skewness of the distribution is given as
- How to compute this on Excel
1 2 3 4 5 6
A B Data Description 1 Value of parameter Min 3 Value of parameter Max 1.4 Value of parameter Mode Formula Description (Result) =NTTRIANGULARSKEW(A2,A3,A4) Skewness of the distribution for the terms above - Function reference : NTTRIANGULARSKEW
Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
- Kurtosis is .
Random Numbers
- Random number x is generated by inverse function method, which is for uniform random U,
x=\begin{cases}\sqrt{U(c-a)(b-a)}+a\quad&\left(U< \frac{c-a}{b-a}\right)\\-\sqrt{(1-U)(b-c)(b-a)}+b\quad&\left(U\geq \frac{c-a}{b-a}\right)\end{cases}[/latex]
- How to generate random numbers on Excel.
1 2 3 4 5 6
A B Data Description 0 Value of parameter A 3 Value of parameter B 1.8 Value of parameter C Formula Description (Result) =NTRANDTRIANGULAR(100,A2,A3,A5,0) 100 triangular deviates based on Mersenne-Twister algorithm for which the parameters above Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A6:A105 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDTRIANGULAR
- Computing probability : NTTRIANGULARDIST
- Computing quantile : NTTRIANGULARINV
- Computing mean : NTTRIANGULARMEAN
- Computing standard deviation : NTTRIANGULARSTDEV
- Computing skewness : NTTRIANGULARSKEW
- Computing kurtosis : NTTRIANGULARKURT
- Computing moments above at once : NTTRIANGULARMOM
- If you know mean, standard deviation and mode of the distribution
- Estimating parameters of the distribution:NTTRIANGULARPARAM
Reference
- Wolfram Mathworld – Triangular Distribution
- Wikipedia – Triangular distribution
- Statistics Online Computational Resource