Johnson SU distribution
Where do you meet this distribution?
- Finance, Economics : Value at Risk(VaR) model
“Estimation of Value at Risk Using Johnson Su-normal Distribution”
Shape of Distribution
Basic Properties
- Four parameters are required (How can you get these).
- Continuous distribution defined on entire range.
- This distribution can be symmetric or asymmetric.
Probability
- Cumulative distribution function
where
and is cumulative distribution function of standard normal distribution.
- Probability density function
- How to compute these on Excel.
1 2
3 4 5 6 7 8
9
A B Data Description 2.5 Value for which you want the distribution 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTJOHNSONSUDIST(A2,A3,A4,A5,A6,TRUE) Cumulative distribution function for the terms above =NTJOHNSONSUDIST(A2,A3,A4,A5,A6,FALSE) Probability density function for the terms above - Function reference : NTJOHNSONSUDIST
Quantile
- Inverse of cumulative distribution function
where is cumulative distribution function of standard normal distribution.
- How to compute this on Excel.
1 2
3 4 5 6 7 8
A B Data Description 0.5 Probability associated with the Johnson SU distribution 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTJOHNSONSUINV(A2,A3,A4,A5,A6) Inverse of the cumulative distribution function for the terms above - Function reference : NTJOHNSONSUINV
Characteristics
Mean – Where is the “center” of the distribution? (Definition)
- Mean of the distribution is given as
where
and is skewness of the distribution (see below)
- How to compute this on Excel
1 2 3 4 5 6 7 A B Data Description 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTJOHNSONSUMEAN(A2,A3,A4,A5) Mean of the distribution for the terms above - Function reference : NTJOHNSONSUMEAN
Standard Deviation – How wide does the distribution spread? (Definition)
- Variance of the distribution is given as
where
Standard Deviation is a positive square root of Variance.
- How to compute this on Excel
1 2 3 4 5 6 7
A B Data Description 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTJOHNSONSUSTDEV(A2,A3,A4,A5) Standard deviation of the distribution for the terms above - Function reference : NTJOHNSONSUSTDEV
Skewness – Which side is the distribution distorted into? (Definition)
- Skewness of the distribution is given as
where
- How to compute this on Excel
1 2 3 4 5 6 7
A B Data Description 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTJOHNSONSUSKEW(A2,A3,A4,A5) Skewness of the distribution for the terms above - Function reference : NTJOHNSONSUSKEW
Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
- Kurtosis of the distribution is given as
where
- How to compute this on Excel
1 2 3 4 5 6 7 A B Data Description 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTLOGNORMKURT(A2,A3,A4,A5) Kurtosis of the distribution for the terms above - Function reference : NTJOHNSONSUKURT
Random Numbers
- Random number x is generated by inverse function method, which is for uniform random U,
- How to generate random numbers on Excel.
1 2 3 4 5 6 7
A B Data Description 1 Value of parameter Gamma 4 Value of parameter Delta 3 Value of parameter Lambda 0.9 Value of parameter Xi Formula Description (Result) =NTRANDJOHNSONSU(100,A2,A3,A4,A5,0) 100 Johnson SU deviates based on Mersenne-Twister algorithm for which the parameters above Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A7:A106 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDJOHNSONSU
- Computing probability : NTJOHNSONSUDIST
- Computing quantile : NTJOHNSONSUINV
- Computing mean : NTJOHNSONSUMEAN
- Computing standard deviation : NTJOHNSONSUSTDEV
- Computing skewness : NTJOHNSONSUSKEW
- Computing kurtosis : NTJOHNSONSUKURT
- Computing moments above at once : NTJOHNSONSUMOM
- If you know mean and standard deviation of the distribution
- Estimating parameters of the distribution:NTJOHNSONSUPARAM