Beta distribution
Where do you meet this distribution?
- Bayesian statistics
- Project management – PERT, CPM and so on
- Information theory
- Rule of succession
- Risk management – Operational risk
Shape of Distribution
Basic Properties
- Two parameters are required (How can you get these?)
- Continuous distribution defined on bounded range
- This distribution can be symmetric or asymmetric.
Probability
- Cumulative distribution function
where is regularized incomplete beta function.
- Probability density function
where is beta function.
- When the 4th. argument of NTBETADIST=TRUE, this function returns same result as Excel function “BETADIST” does.
- How to compute these on Excel.
1 2 3 4 5 6
7
A B Data Description 0.5 Value for which you want the distribution 8 Value of parameter Alpha 2 Value of parameter Beta Formula Description (Result) =NTBETADIST(A2,A3,A4,TRUE) Cumulative distribution function for the terms above =NTBETADIST(A2,A3,A4,FALSE) Probability density function for the terms above - Function reference : NTBETADIST
Quantile
- Inverse function of cumulative distribution function cannot be expressed in closed form.
- BETAINV is an excel function.
- How to compute this on Excel.
1 2 3 4 5 6
A B Data Description 0.7 Probability associated with the distribution 1.7 Value of parameter Alpha 0.9 Value of parameter Beta Formula Description (Result) =BETAINV(A2,A3,A4) Inverse of the cumulative distribution function for the terms above
Characteristics
Mean – Where is the “center” of the distribution? (Definition)
- Mean of the distribution is given as
- How to compute this on Excel
1 2 3 4 5 A B Data Description 8 Value of parameter Alpha 2 Value of parameter Beta Formula Description (Result) =NTBETAMEAN(A2,A3) Mean of the distribution for the terms above - Function reference : NTBETAMEAN
Standard Deviation – How wide does the distribution spread? (Definition)
- Variance of the distribution is given as
Standard Deviation is a positive square root of Variance.
- How to compute this on Excel
1 2 3 4 5 A B Data Description 8 Value of parameter Alpha 2 Value of parameter Beta Formula Description (Result) =NTBETASTDEV(A2,A3) Standard deviation of the distribution for the terms above - Function reference : NTBETASTDEV
Skewness – Which side is the distribution distorted into? (Definition)
- Skewness of the distribution is given as
- How to compute this on Excel
1 2 3 4 5 A B Data Description 8 Value of parameter Alpha 2 Value of parameter Beta Formula Description (Result) =NTBETASKEW(A2,A3) Skewness of the distribution for the terms above - Function reference : NTBETASKEW
Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
- Kurtosis of the distribution is given as
- This distribution can be leptokurtic or platykurtic.
- How to compute this on Excel
1 2 3 4 5 A B Data Description 8 Value of parameter Alpha 2 Value of parameter Beta Formula Description (Result) =NTBETAKURT(A2,A3) Kurtosis of the distribution for the terms above - Function reference : NTBETAKURT
Random Numbers
- The algorithm to generated random numbers is shown in:
R. C. H. Cheng, “Generating beta variates with nonintegral shape parameters”, Communication of the ACM, 21(1978), pp 317-322
- How to generate random numbers on Excel.
1 2 3 4 5
A B Data Description 0.5 Value of parameter Alpha 0.5 Value of parameter Beta Formula Description (Result) =NTRANDBETA(100,A2,A3,0) 100 beta deviates based on Mersenne-Twister algorithm for which the parameters above Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
- Function reference : NTRANDBETA
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDBETA
- Computing probability : NTBETADIST
- Computing mean : NTBETAMEAN
- Computing standard deviation : NTBETASTDEV
- Computing skewness : NTBETASKEW
- Computing kurtosis : NTBETAKURT
- Computing moments above at once : NTBETAMOM
- If you know mean and standard deviation of the distribution
- Estimating parameters of the distribution:NTBETAPARAM
Reference
- Wolfram Mathworld – Beta Distribution
- Wikipedia – Beta distribution
- Statistics Online Computational Resource
- Numerical Technologies Magnitude – Operational risk