Bernoulli Distribution
Where do you meet this distribution?
- Coin toss
- 1-dim. random walk
Shape of Distribution
Basic Properties
- A parameter is required.
- Discrete distribution defined at
Probability
- Cumulative distribution function
- Probability mass function
- How to compute these on Excel.
1 2 3 4 5 6 A B Data Description 1 Value for which you want the distribution 0.6 Value of parameter p Formula Description (Result) =IF(A2=0,1-A3,1) Cumulative distribution function for the terms above =IF(A2=0,1-A3,A3) Probability mass function for the terms above
Characteristics
Mean – Where is the “center” of the distribution? (Definition)
- Mean of the distribution is given as
Standard Deviation – How wide does the distribution spread? (Definition)
- Variance of the distribution
Standard Deviation is a positive square root of Variance
- How to compute this on Excel
1 2 3 4 A B Data Description 0.6 Value of parameter p Formula Description (Result) =SQRT(A2*(1-A2)) Variance of the distribution for the terms above
Skewness – Which side is the distribution distorted into? (Definition)
- Skewness
- How to compute this on Excel.
1 2 3 4 A B Data Description 0.6 Value of parameter p Formula Description (Result) =(1-2*A2)/(SQRT(A2*(1-A2)) Skewness of the distribution for the terms above
Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
- Kurtosis
- How to compute this on Excel
1 2 3 4 A B Data Description 0.6 Value of parameter p Formula Description (Result) =(6*A2^2-6*A2+1)/(A2*(1-A2)) Kurtosis of the distribution for the terms above
Random Numbers
- How to generate random numbers on Excel.
1 2 3 4
A B Data Description 0.6 Value of parameter p Formula Description (Result) =IF(NTRAND(100)<1-A2,0,1) 100 Bernoulli deviates based on Mersenne-Twister algorithm for which the parameters above Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A4:A103 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
NtRand Functions
Not supported yet
Reference
- Wolfram Mathworld – Bernoulli distribution
- Wikipedia – Bernoulli distribution
- Statistics Online Computational Resource