// Home / Documentation / Gallery of Distributions / Johnson SU distribution

Johnson SU distribution

Where do you meet this distribution?

Shape of Distribution

Basic Properties

  • Four parameters \gamma, \delta,\lambda,\xi are required (How can you get these).
    \delta>0,\lambda>0
  • Continuous distribution defined on entire range.
  • This distribution can be symmetric or asymmetric.

Probability

  • Cumulative distribution function
    F(x)=\Phi\left(\gamma+\delta\sinh^{-1}z\right)

    where

    z=\frac{x-\xi}{\lambda}

    and \Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • Probability density function
    f(x)=\frac{\delta}{\lambda\sqrt{2\pi}\sqrt{z^2+1}}\exp\left[-\frac{1}{2}\left(\gamma+\delta\sinh^{-1}z\right)^2\right]
  • How to compute these on Excel.
     
    1
    2
       
    3
    4
    5
    6
    7
    8
       
    9
       
    A B
    Data Description
    2.5 Value for which you want the distribution
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTJOHNSONSUDIST(A2,A3,A4,A5,A6,TRUE) Cumulative distribution function for the terms above
    =NTJOHNSONSUDIST(A2,A3,A4,A5,A6,FALSE) Probability density function for the terms above

    Sample distribution

  • Function reference : NTJOHNSONSUDIST

Quantile

  • Inverse of cumulative distribution function
    F^{-1}(P)=\lambda\sinh\left(\frac{\Phi^{-1}(P)-\gamma}{\delta}\right)+\xi

    where \Phi(\cdot) is cumulative distribution function of standard normal distribution.

  • How to compute this on Excel.
     
    1
    2
       
    3
    4
    5
    6
    7
    8
       
    A B
    Data Description
    0.5 Probability associated with the Johnson SU distribution
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTJOHNSONSUINV(A2,A3,A4,A5,A6) Inverse of the cumulative distribution function for the terms above
  • Function reference : NTJOHNSONSUINV

Characteristics

Mean – Where is the “center” of the distribution? (Definition)

  • Mean of the distribution is given as
    \xi+\text{sign}(\gamma_1)\sigma\frac{\omega-1-m(\omega)}{\omega-1}

    where

    m(\omega)=-2+\sqrt{4+2\left(\omega^2-\frac{\beta_2+3}{\omega^2+2\omega+3}\right)}
    \omega=\exp\left(\delta^{-2}\right)

    and \gamma_1 is skewness of the distribution (see below)

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
    A B
    Data Description
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTJOHNSONSUMEAN(A2,A3,A4,A5) Mean of the distribution for the terms above
  • Function reference : NTJOHNSONSUMEAN

Standard Deviation – How wide does the distribution spread? (Definition)

  • Variance of the distribution is given as
    \lambda(\omega-1)\sqrt{\frac{\omega+1}{2m(\omega)}}

    where

    m(\omega)=-2+\sqrt{4+2\left(\omega^2-\frac{\beta_2+3}{\omega^2+2\omega+3}\right)}
    \omega=\exp\left(\delta^{-2}\right)

    Standard Deviation is a positive square root of Variance.

  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
       
    A B
    Data Description
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTJOHNSONSUSTDEV(A2,A3,A4,A5) Standard deviation of the distribution for the terms above
  • Function reference : NTJOHNSONSUSTDEV

Skewness – Which side is the distribution distorted into? (Definition)

  • Skewness of the distribution is given as
    \beta_1=\omega(\omega-1)\frac{[\omega(\omega+2)\sinh 3\Omega+3\sinh\Omega]^2}{2(\omega\cosh 2\Omega+1)^3}

    where

    \omega=\exp\left(\delta^{-2}\right),\;\Omega=\frac{\gamma}{\delta}
  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
       
    A B
    Data Description
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTJOHNSONSUSKEW(A2,A3,A4,A5) Skewness of the distribution for the terms above
  • Function reference : NTJOHNSONSUSKEW

Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)

  • Kurtosis of the distribution is given as
    \beta_2=\frac{\omega^2(\omega^4+2\omega^3+3\omega^2-3)\cosh 4\Omega+4\omega^2(\omega+2)\cosh 2\Omega+3(2\omega+1)}{2(\omega\cosh 2\Omega+2)^2}-3

    where

    \omega=\exp\left(\delta^{-2}\right),\;\Omega=\frac{\gamma}{\delta}
  • How to compute this on Excel
     
    1
    2
    3
    4
    5
    6
    7
    A B
    Data Description
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTLOGNORMKURT(A2,A3,A4,A5) Kurtosis of the distribution for the terms above
  • Function reference : NTJOHNSONSUKURT

Random Numbers

  • Random number x is generated by inverse function method, which is for uniform random U,
    x=\lambda\left(\frac{\Phi^{-1}(U)-\gamma}{\delta}\right)+\xi
  • How to generate random numbers on Excel.
     
    1
    2
    3
    4
    5
    6
    7
       
    A B
    Data Description
    1 Value of parameter Gamma
    4 Value of parameter Delta
    3 Value of parameter Lambda
    0.9 Value of parameter Xi
    Formula Description (Result)
    =NTRANDJOHNSONSU(100,A2,A3,A4,A5,0) 100 Johnson SU deviates based on Mersenne-Twister algorithm for which the parameters above

    Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A7:A106 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.

NtRand Functions

Reference

 


Comments are closed.