Gamma distribution
Shape of Distribution
Basic Properties
- Two parameters are required (How can you get these?)
- Continuous distribution defined on semi-bounded range
- This distribution is asymmetric.
Probability
- Probability density function
, where is gamma function.
- Cumulative distribution function
, where is incomplete gamma function.
- How to compute these on Excel.
1 2 3 4 5 6
7
A B Data Description 5 Value for which you want the distribution 4 Value of parameter Alpha 2.3 Value of parameter Beta Formula Description (Result) =NTGAMMADIST(A2,A3,A4,TRUE) Cumulative distribution function for the terms above =NTGAMMADIST(A2,A3,A4,FALSE) Probability density function for the terms above - Function reference : NTGAMMADIST
Quantile
- Inverse function of cumulative distribution function cannot be expressed in closed form.
- GAMMAINV is an excel function.
- How to compute this on Excel.
1 2 3 4 5 6
A B Data Description 0.7 Probability associated with the distribution 4 Value of parameter Alpha 2.3 Value of parameter Beta Formula Description (Result) =GAMMAINV(A2,A3,A4) Inverse of the cumulative distribution function for the terms above
Characteristics
Mean – Where is the “center” of the distribution? (Definition)
- Mean of the distribution is given as
- How to compute this on Excel
1 2 3 4 5 A B Data Description 4 Value of parameter Alpha 2.3 Value of parameter Beta Formula Description (Result) =NTGAMMAMEAN(A2,A3) Mean of the distribution for the terms above - Function reference : NTGAMMAMEAN
Standard Deviation – How wide does the distribution spread? (Definition)
- Variance of the distribution is given as
Standard Deviation is a positive square root of Variance.
- How to compute this on Excel
1 2 3 4 5
A B Data Description 4 Value of parameter Alpha 2.3 Value of parameter Beta Formula Description (Result) =NTGAMMASTDEV(A2,A3) Standard deviation of the distribution for the terms above - Function reference : NTGAMMASTDEV
Skewness – Which side is the distribution distorted into? (Definition)
- Skewness of the distribution is given as
- How to compute this on Excel
1 2 3 4 A B Data Description 4 Value of parameter Alpha Formula Description (Result) =NTGAMMASKEW(A2) Skewness of the distribution for the terms above - Function reference : NTGAMMASKEW
Kurtosis – Sharp or Dull, consequently Fat Tail or Thin Tail (Definition)
- Kurtosis of the distribution is given as
- This distribution can be leptokurtic or platykurtic.
- How to compute this on Excel
1 2 3 4 A B Data Description 4 Value of parameter Alpha Formula Description (Result) =NTGAMMAKURT(A2) Kurtosis of the distribution for the terms above - Function reference : NTGAMMAKURT
Random Numbers
- How to generate random numbers on Excel.
1 2 3 4 5
A B Data Description 4 Value of parameter Alpha 2.3 Value of parameter Beta Formula Description (Result) =NTRANDGAMMA(100,A2,A3,0) 100 gamma deviates based on Mersenne-Twister algorithm for which the parameters above Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A5:A104 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER.
- Function reference : NTRANDGAMMA
NtRand Functions
- If you already have parameters of the distribution
- Generating random numbers based on Mersenne Twister algorithm: NTRANDGAMMA
- Computing probability : NTGAMMADIST
- Computing mean : NTGAMMAMEAN
- Computing standard deviation : NTGAMMASTDEV
- Computing skewness : NTGAMMASKEW
- Computing kurtosis : NTGAMMAKURT
- Computing moments above at once : NTGAMMAMOM
- If you know mean and standard deviation of the distribution
- Estimating parameters of the distribution:NTGAMMAPARAM
Reference
- Wolfram Mathworld – Gamma Distribution
- Wikipedia – Gamma distribution
- Statistics Online Computational Resource